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Abstract
The recent tremendous success of unsupervised
word embeddings in a multitude of applications
raises the obvious question if similar methods
could be derived to improve embeddings (i.e.
semantic representations) of word sequences as
well. We present a simple but efficient unsu-
pervised objective to train distributed represen-
tations of sentences. Our method outperforms
the state-of-the-art unsupervised models on most
benchmark tasks, highlighting the robustness of
the produced general-purpose sentence embed-
dings.

1. Introduction
Improving unsupervised learning is of key importance for
advancing machine learning methods, as to unlock access
to almost unlimited amounts of data to be used as training
resources. The majority of recent success stories of deep
learning does not fall into this category but instead relied
on supervised training (in particular in the vision domain).
A very notable exception comes from the text and natural
language processing domain, in the form of semantic word
embeddings trained unsupervised (Mikolov et al., 2013b;a;
Pennington et al., 2014). Within only a few years from their
invention, such word representations – which are based on
a simple matrix factorization model as we formalize below
– are now routinely trained on very large amounts of raw
text data, and have become ubiquitous building blocks of a
majority of current state-of-the-art NLP applications.

While very useful semantic representations are available
for words, it remains challenging to produce and learn such
semantic embeddings for longer pieces of text, such as sen-
tences, paragraphs or entire documents. Even more so, it
remains a key goal to learn such general-purpose represen-
tations in an unsupervised way.

Currently, two contrary research trends have emerged in
text understanding: On one hand, a strong trend in deep-
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learning for NLP leads towards increasingly powerful
and complex models, such as recurrent neural networks
(RNNs), LSTMs, attention models and even Neural Turing
Machine architectures. While extremely strong in expres-
siveness, the increased model complexity makes such mod-
els much slower to train on larger datasets. On the other end
of the spectrum, simpler “shallow” models such as matrix
factorizations (or bilinear models) can benefit from training
on much larger sets of data, which can be a key advantage,
especially in the unsupervised setting.

Surprisingly, for constructing sentence embeddings,
naively using averaged word vectors was recently shown
to outperform LSTMs (see (Wieting et al., 2016a) for plain
averaging, and (Arora et al., 2017) for weighted averag-
ing). This example shows potential in exploiting the trade-
off between model complexity and ability to process huge
amounts of text using scalable algorithms, towards the sim-
pler side. In view of this trade-off, our work here further
advances unsupervised learning of sentence embeddings.
Our proposed model can be seen as an extension of the C-
BOW (Mikolov et al., 2013b;a) training objective to train
sentence instead of word embeddings. We demonstrate that
the empirical performance of our resulting general-purpose
sentence embeddings very significantly exceeds the state of
the art, while keeping the model simplicity as well as train-
ing and inference complexity exactly as low as in averaging
methods (Wieting et al., 2016a; Arora et al., 2017), thereby
also putting the title of (Arora et al., 2017) in perspective.

Contributions. The main contributions in this work can
be summarized as follows:1

• Model. We propose Sent2Vec, a simple unsupervised
model allowing to compose sentence embeddings us-
ing the word vectors along with n-gram embeddings,
simultaneously training composition and the embed-
ding vectors themselves.

• Scalability. The computational complexity of our em-
beddings is onlyO(1) vector operations per word pro-
cessed, both during training and inference of the sen-

1 All our code and pre-trained models are publicly available
on http://github.com/epfml/sent2vec.
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tence embeddings. This strongly contrasts all neural
network based approaches, and allows our model to
learn from extremely large datasets, which is a crucial
advantage in the unsupervised setting.

• Performance. Our method shows significant perfor-
mance improvements compared to the current state-
of-the-art unsupervised and even semi-supervised
models. The resulting general-purpose embeddings
show strong robustness when transferred to a wide
range of prediction benchmarks.

2. Model
Our model is inspired by simple matrix factor models (bi-
linear models) such as recently very successfully used in
unsupervised learning of word embeddings (Mikolov et al.,
2013b;a; Pennington et al., 2014; Bojanowski et al., 2017)
as well as supervised of sentence classification (Joulin
et al., 2017). More precisely, these models are formalized
as an optimization problem of the form

min
U ,V

∑
S∈C

fS(UV ιS) (1)

for two parameter matrices U ∈ Rk×h and V ∈ Rh×|V|,
where V denotes the vocabulary. In all models studied,
the columns of the matrix V will collect the learned word
vectors, having h dimensions. For a given sentence S,
which can be of arbitrary length, the indicator vector ιS ∈
{0, 1}|V| is a binary vector encoding S (bag of words en-
coding).

Fixed-length context windows S running over the cor-
pus are used in word embedding methods as in C-BOW
(Mikolov et al., 2013b;a) and GloVe (Pennington et al.,
2014). Here we have k = |V| and each cost function
fS : Rk → R only depends on a single row of its input, de-
scribing the observed target word for the given fixed-length
context S. In contrast, for sentence embeddings which
are the focus of our paper here, S will be entire sentences
or documents (therefore variable length). This property is
shared with the supervised FastText classifier (Joulin et al.,
2017), which however uses soft-max with k � |V| being
the number of class labels.

2.1. Proposed Unsupervised Model

We propose a new unsupervised model, Sent2Vec, for
learning universal sentence embeddings. Conceptually, the
model can be interpreted as a natural extension of the word-
contexts from C-BOW (Mikolov et al., 2013b;a) to a larger
sentence context, with the sentence words being specifi-
cally optimized towards additive combination over the sen-
tence, by means of the unsupervised objective function.

Formally, we learn source vw and target uw embeddings
for each word w in the vocabulary, with embedding dimen-
sion h and k = |V| as in (1). The sentence embedding
is defined as the average of the source word embeddings of
its constituent words, as in (2). We augment this model fur-
thermore by also learning source embeddings for not only
unigrams but also n-grams present in each sentence, and
averaging the n-gram embeddings along with the words,
i.e., the sentence embedding vS for S is modeled as

vS := 1
|R(S)|V ιR(S) =

1
|R(S)|

∑
w∈R(S)

vw (2)

where R(S) is the list of n-grams (including unigrams)
present in sentence S. In order to predict a missing word
from the context, our objective models the softmax output
approximated by negative sampling following (Mikolov
et al., 2013b). For the large number of output classes
|V| to be predicted, negative sampling is known to sig-
nificantly improve training efficiency, see also (Goldberg
& Levy, 2014). Given the binary logistic loss function
` : x 7→ log (1 + e−x) coupled with negative sampling, our
unsupervised training objective is formulated as follows:

min
U ,V

∑
S∈C

∑
wt∈S

(
`
(
u>wt

vS\{wt}
)
+
∑

w′∈Nwt

`
(
− u>w′vS\{wt}

))

where S corresponds to the current sentence and Nwt
is

the set of words sampled negatively for the word wt ∈ S.
The negatives are sampled2 following a multinomial distri-
bution where each word w is associated with a probability
qn(w) :=

√
fw
/ (∑

wi∈V
√
fwi

)
, where fw is the nor-

malized frequency of w in the corpus.

To select the possible target unigrams (positives), we use
subsampling as in (Joulin et al., 2017; Bojanowski et al.,
2017), each word w being discarded with probability 1 −
qp(w) where qp(w) := min

{
1,
√
t/fw + t/fw

}
. Where t

is the subsampling hyper-parameter. Subsampling prevents
very frequent words of having too much influence in the
learning as they would introduce strong biases in the pre-
diction task. With positives subsampling and respecting the
negative sampling distribution, the precise training objec-
tive function becomes

min
U ,V

∑
S∈C

∑
wt∈S

(
qp(wt)`

(
u>wt

vS\{wt}
)

(3)

+ |Nwt
|
∑
w′∈V

qn(w
′)`
(
− u>w′vS\{wt}

))
2To efficiently sample negatives, a pre-processing table is con-

structed, containing the words corresponding to the square root of
their corpora frequency. Then, the negatives Nwt are sampled
uniformly at random from the negatives table except the target wt

itself, following (Joulin et al., 2017; Bojanowski et al., 2017).
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2.2. Computational Efficiency

In contrast to more complex neural network based mod-
els, one of the core advantages of the proposed technique
is the low computational cost for both inference and train-
ing. Given a sentence S and a trained model, computing
the sentence representation vS only requires |S| ·h floating
point operations (or |R(S)| · h to be precise for the n-gram
case, see (2)), where h is the embedding dimension. The
same holds for the cost of training with SGD on the objec-
tive (3), per sentence seen in the training corpus. Due to the
simplicity of the model, parallel training is straight-forward
using parallelized or distributed SGD.

2.3. Comparison to C-BOW

C-BOW (Mikolov et al., 2013b;a) tries to predict a chosen
target word given its fixed-size context window, the context
being defined by the average of the vectors associated with
the words at a distance less than the window size hyper-
parameter ws. If our system, when restricted to unigram
features, can be seen as an extension of C-BOW where
the context window includes the entire sentence, in prac-
tice there are few important differences as C-BOW uses
important tricks to facilitate the learning of word embed-
dings. C-BOW first uses frequent word subsampling on the
sentences, deciding to discard each token w with probabil-
ity qp(w) or alike (small variations exist across implemen-
tations). Subsampling prevents the generation of n-grams
features, and deprives the sentence of an important part of
its syntactical features. It also shortens the distance be-
tween subsampled words, implicitly increasing the span of
the context window. A second trick consists of using dy-
namic context windows: for each subsampled word w, the
size of its associated context window is sampled uniformly
between 1 and ws. Using dynamic context windows is
equivalent to weighing by the distance from the focus word
w divided by the window size (Levy et al., 2015). This
makes the prediction task local, and go against our objec-
tive of creating sentence embeddings as we want to learn
how to compose all n-gram features present in a sentence.
In the results section, we report a significant improvement
of our method over C-BOW.

2.4. Model Training

Three different datasets have been used to train our models:
the Toronto book corpus3, Wikipedia sentences and tweets.
The Wikipedia and Toronto books sentences have been to-
kenized using the Stanford NLP library (Manning et al.,
2014), while for tweets we used the NLTK tweets tokenizer
(Bird et al., 2009). For training, we select a sentence ran-
domly from the dataset and then proceed to select all the

3http://www.cs.toronto.edu/˜mbweb/

possible target unigrams using subsampling. We update the
weights using SGD with a linearly decaying learning rate.

Also, to prevent overfitting, for each sentence we use
dropout on its list of n-grams R(S) \ {U(S)}, where U(S)
is the set of all unigrams contained in sentence S. After
empirically trying multiple dropout schemes, we find that
droppingK n-grams (n > 1) for each sentence is giving su-
perior results compared to dropping each token with some
fixed probability. This dropout mechanism would nega-
tively impact shorter sentences. The regularization can be
pushed further by applying L1 regularization to the word
vectors. Encouraging sparsity in the embedding vectors is
particularly beneficial for high dimension h. The additional
soft thresholding in every SGD step adds negligible com-
putational cost. See also Appendix B.

We train two models on each dataset, one with unigrams
only and one with unigrams and bigrams. All training
parameters for the models are provided in Table 5 in the
supplementary material. Our C++ implementation builds
upon the FastText library (Joulin et al., 2017; Bojanowski
et al., 2017). We will make our code and pre-trained mod-
els available open-source.

3. Related Work
We discuss existing models which have been proposed to
construct sentence embeddings. While there is a large body
of works in this direction – several among these using e.g.
labelled datasets of paraphrase pairs to obtain sentence em-
beddings in a supervised manner (Wieting et al., 2016b;a)
– we here focus on unsupervised, task-independent mod-
els. While some methods require ordered raw text i.e., a
coherent corpus where the next sentence is a logical con-
tinuation of the previous sentence, others rely only on raw
text i.e., an unordered collection of sentences. Finally we
also discuss alternative models built from structured data
sources.

3.1. Unsupervised Models Independent of Sentence
Ordering

The ParagraphVector DBOW model (Le & Mikolov,
2014) is a log-linear model which is trained to learn sen-
tence as well as word embeddings and then use a soft-
max distribution to predict words contained in the sentence
given the sentence vector representation. They also pro-
pose a different model ParagraphVector DM where they
use n-grams of consecutive words along with the sentence
vector representation to predict the next word.

(Hill et al., 2016a) propose a Sequential (Denoising) Au-
toencoder, S(D)AE. This model first introduces noise in
the input data: Firstly each word is deleted with prob-
ability p0, then for each non-overlapping bigram, words

http://www.cs.toronto.edu/~mbweb/
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are swapped with probability px. The model then uses an
LSTM-based architecture to retrieve the original sentence
from the corrupted version. The model can then be used
to encode new sentences into vector representations. In the
case of p0 = px = 0, the model simply becomes a Sequen-
tial Autoencoder. (Hill et al., 2016a) also propose a variant
(S(D)AE + embs.) in which the words are represented by
fixed pre-trained word vector embeddings.

(Arora et al., 2017) propose a model in which sentences
are represented as a weighted average of fixed (pre-trained)
word vectors, followed by post-processing step of subtract-
ing the principal component. Using the generative model
of (Arora et al., 2016), words are generated conditioned on
a sentence “discourse” vector cs:

Pr[w | cs] = αfw + (1− α)exp(c̃
>
s vw)

Zc̃s

,

where Zc̃s
:=
∑
w∈V exp(c̃

>
s vw) and c̃s := βc0 + (1 −

β)cs and α, β are scalars. c0 is the common discourse vec-
tor, representing a shared component among all discourses,
mainly related to syntax. It allows the model to better gen-
erate syntactical features. The αfw term is here to enable
the model to generate some frequent words even if their
matching with the discourse vector c̃s is low.

Therefore, this model tries to generate sentences as a mix-
ture of three type of words: words matching the sentence
discourse vector cs, syntactical words matching c0, and
words with high fw. (Arora et al., 2017) demonstrated
that for this model, the MLE of c̃s can be approximated
by
∑
w∈S

a
fw+avw, where a is a scalar. The sentence dis-

course vector can hence be obtained by subtracting c0 es-
timated by the first principal component of c̃s’s on a set
of sentences. In other words, the sentence embeddings are
obtained by a weighted average of the word vectors strip-
ping away the syntax by subtracting the common discourse
vector and down-weighting frequent tokens. They gen-
erate sentence embeddings from diverse pre-trained word
embeddings among which are unsupervised word embed-
dings such as GloVe (Pennington et al., 2014) as well as su-
pervised word embeddings such as paragram-SL999 (PSL)
(Wieting et al., 2015) trained on the Paraphrase Database
(Ganitkevitch et al., 2013).

In a very different line of work, C-PHRASE (Pham et al.,
2015) relies on additional information from the syntactic
parse tree of each sentence, which is incorporated into the
C-BOW training objective.

(Huang & Anandkumar, 2016) show that single layer
CNNs can be modeled using a tensor decomposition ap-
proach. While building on an unsupervised objective, the
employed dictionary learning step for obtaining phrase
templates is task-specific (for each use-case), not resulting
in general-purpose embeddings.

3.2. Unsupervised Models Depending on Sentence
Ordering

The SkipThought model (Kiros et al., 2015) combines
sentence level models with recurrent neural networks.
Given a sentence Si from an ordered corpus, the model is
trained to predict Si−1 and Si+1.

FastSent (Hill et al., 2016a) is a sentence-level log-linear
bag-of-words model. Like SkipThought, it uses adjacent
sentences as the prediction target and is trained in an unsu-
pervised fashion. Using word sequences allows the model
to improve over the earlier work of paragraph2vec (Le &
Mikolov, 2014). (Hill et al., 2016a) augment FastSent fur-
ther by training it to predict the constituent words of the
sentence as well. This model is named FastSent + AE in
our comparisons.

Compared to our approach, Siamese C-BOW (Kenter
et al., 2016) shares the idea of learning to average word em-
beddings over a sentence. However, it relies on a Siamese
neural network architecture to predict surrounding sen-
tences, contrasting our simpler unsupervised objective.

Note that on the character sequence level instead of word
sequences, FastText (Bojanowski et al., 2017) uses the
same conceptual model to obtain better word embeddings.
This is most similar to our proposed model, with two
key differences: Firstly, we predict from source word se-
quences to target words, as opposed to character sequences
to target words, and secondly, our model is averaging the
source embeddings instead of summing them.

3.3. Models requiring structured data

DictRep (Hill et al., 2016b) is trained to map dictionary
definitions of the words to the pre-trained word embed-
dings of these words. They use two different architectures,
namely BOW and RNN (LSTM) with the choice of learn-
ing the input word embeddings or using them pre-trained.
A similar architecture is used by the CaptionRep variant,
but here the task is the mapping of given image captions to
a pre-trained vector representation of these images.

4. Evaluation Tasks
We use a standard set of supervised as well as unsuper-
vised benchmark tasks from the literature to evaluate our
trained models, following (Hill et al., 2016a). The breadth
of tasks allows to fairly measure generalization to a wide
area of different domains, testing the general-purpose qual-
ity (universality) of all competing sentence embeddings.
For downstream supervised evaluations, sentence embed-
dings are combined with logistic regression to predict tar-
get labels. In the unsupervised evaluation for sentence sim-
ilarity, correlation of the cosine similarity between two em-
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beddings is compared to human annotators.

Downstream Supervised Evaluation. Sentence embed-
dings are evaluated for various supervised classification
tasks as follows. We evaluate paraphrase identification
(MSRP) (Dolan et al., 2004), classification of movie review
sentiment (MR) (Pang & Lee, 2005), product reviews (CR)
(Hu & Liu, 2004), subjectivity classification (SUBJ)(Pang
& Lee, 2004), opinion polarity (MPQA) (Wiebe et al.,
2005) and question type classification (TREC) (Voorhees,
2002). To classify, we use the code provided by (Kiros
et al., 2015) in the same manner as in (Hill et al.,
2016a). For the MSRP dataset, containing pairs of sen-
tences (S1, S2) with associated paraphrase label, we gen-
erate feature vectors by concatenating their Sent2Vec rep-
resentations |vS1

− vS2
| with the component-wise prod-

uct vS1 � vS2 . The predefined training split is used to
tune the L2 penalty parameter using cross-validation and
the accuracy and F1 scores are computed on the test set.
For the remaining 5 datasets, Sent2Vec embeddings are in-
ferred from input sentences and directly fed to a logistic
regression classifier. Accuracy scores are obtained using
10-fold cross-validation for the MR, CR, SUBJ and MPQA
datasets. For those datasets nested cross-validation is used
to tune the L2 penalty. For the TREC dataset, as for the
MRSP dataset, the L2 penalty is tuned on the predefined
train split using 10-fold cross-validation, and the accuracy
is computed on the test set.

Unsupervised Similarity Evaluation. We perform un-
supervised evaluation of the the learnt sentence embed-
dings using the sentence cosine similarity, on the STS
2014 (Agirre et al., 2014) and SICK 2014 (Marelli et al.,
2014) datasets. These similarity scores are compared to the
gold-standard human judgements using Pearson’s r (Pear-
son, 1895) and Spearman’s ρ (Spearman, 1904) correlation
scores. The SICK dataset consists of about 10,000 sentence
pairs along with relatedness scores of the pairs. The STS
2014 dataset contains 3,770 pairs, divided into six differ-
ent categories on the basis of origin of sentences/phrases
namely Twitter, headlines, news, forum, WordNet and im-
ages. See (Agirre et al., 2014) for more precise information
on how the pairs have been created.

5. Results and Discussion
In Tables 1 and 2, we compare our results with those ob-
tained by (Hill et al., 2016a) on different models. Along
with the models discussed in Section 3, this also includes
the sentence embedding baselines obtained by simple av-
eraging of word embeddings over the sentence, in both the
C-BOW and skip-gram variants. TF-IDF BOW is a repre-
sentation consisting of the counts of the 200,000 most com-
mon feature-words, weighed by their TF-IDF frequencies.
To ensure coherence, we only include unsupervised mod-

els in the main paper. Performance of supervised and semi-
supervised models on these evaluations can be observed in
Tables 6 and 7 in the supplementary material.

Downstream Supervised Evaluation Results. On run-
ning supervised evaluations and observing the results in
Table 1, we find that on an average our models are sec-
ond only to SkipThought vectors. Also, both our models
achieve state of the art results on the CR task. We also ob-
serve that on half of the supervised tasks, our unigrams +
bigram model is the the best model after SkipThought. Our
models are weaker on the MSRP task (which consists of the
identification of labelled paraphrases) compared to state-
of-the-art methods. However, we observe that the models
which perform extremely well on this task end up faring
very poorly on the other tasks, indicating a lack of general-
izability.

On rest of the tasks, our models perform extremely well.
The SkipThought model is able to outperform our models
on most of the tasks as it is trained to predict the previous
and next sentences and a lot of tasks are able to make use of
this contextual information missing in our Sent2Vec mod-
els. For example, the TREC task is a poor measure of how
one predicts the content of the sentence (the question) but
a good measure of how the next sentence in the sequence
(the answer) is predicted.

Unsupervised Similarity Evaluation Results. In Table 2,
we see that our Sent2Vec models are state-of-the-art on the
majority of tasks when comparing to all the unsupervised
models trained on the Toronto corpus, and clearly achieve
the best averaged performance. Our Sent2Vec models also
on average outperform or are at par with the C-PHRASE
model, despite significantly lagging behind on the STS
2014 WordNet and News subtasks. This observation can
be attributed to the fact that a big chunk of the data that
the C-PHRASE model is trained on comes from English
Wikipedia, helping it to perform well on datasets involv-
ing definition and news items. Also, C-PHRASE uses data
three times the size of the Toronto book corpus. Interest-
ingly, our model outperforms C-PHRASE when trained on
Wikipedia, as shown in Table 3, despite the fact that we use
no parse tree information.

In the official results of the more recent edition of the STS
2017 benchmark (Cer et al., 2017), our model also signif-
icantly outperforms C-PHRASE, and delivers the best un-
supervised baseline method.

Macro Average. To summarize our contributions on both
supervised and unsupervised tasks, in Table 3 we present
the results in terms of the macro average over the averages

4For the Siamese C-BOW model trained on the Toronto cor-
pus, supervised evaluation as well as similarity evaluation results
on the SICK 2014 dataset are unavailable.
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Data Model MSRP (Acc / F1) MR CR SUBJ MPQA TREC Average

Unordered Sentences:
(Toronto Books;

70 million sentences,
0.9 Billion Words)

SAE 74.3 / 81.7 62.6 68.0 86.1 76.8 80.2 74.7
SAE + embs. 70.6 / 77.9 73.2 75.3 89.8 86.2 80.4 79.3
SDAE 76.4 / 83.4 67.6 74.0 89.3 81.3 77.7 78.3
SDAE + embs. 73.7 / 80.7 74.6 78.0 90.8 86.9 78.4 80.4
ParagraphVec DBOW 72.9 / 81.1 60.2 66.9 76.3 70.7 59.4 67.7
ParagraphVec DM 73.6 / 81.9 61.5 68.6 76.4 78.1 55.8 69.0
Skipgram 69.3 / 77.2 73.6 77.3 89.2 85.0 82.2 78.5
C-BOW 67.6 / 76.1 73.6 77.3 89.1 85.0 82.2 79.1
Unigram TFIDF 73.6 / 81.7 73.7 79.2 90.3 82.4 85.0 80.7
Sent2Vec uni. 72.2 / 80.3 75.1 80.2 90.6 86.3 83.8 81.4
Sent2Vec uni. + bi. 72.5 / 80.8 75.8 80.3 91.2 85.9 86.4 82.0

Ordered Sentences:
Toronto Books

SkipThought 73.0 / 82.0 76.5 80.1 93.6 87.1 92.2 83.8
FastSent 72.2 / 80.3 70.8 78.4 88.7 80.6 76.8 77.9
FastSent+AE 71.2 / 79.1 71.8 76.7 88.8 81.5 80.4 78.4

2.8 Billion words C-PHRASE 72.2 / 79.6 75.7 78.8 91.1 86.2 78.8 80.5

Table 1: Comparison of the performance of different models on different supervised evaluation tasks. An underline
indicates the best performance for the dataset. Top 3 performances in each data category are shown in bold. The average
is calculated as the average of accuracy for each category (For MSRP, we take the average of two entries.)

STS 2014 SICK 2014
Model News Forum WordNet Twitter Images Headlines Test + Train Average
SAE .17/.16 .12/.12 .30/.23 .28/.22 .49/.46 .13/.11 .32/.31 .26/.23
SAE + embs. .52/.54 .22/.23 .60/.55 .60/.60 .64/.64 .41/.41 .47/.49 .50/.49
SDAE .07/.04 .11/.13 .33/.24 .44/.42 .44/.38 .36/.36 .46/.46 .31/.29
SDAE + embs. .51/.54 .29/.29 .56/.50 .57/.58 .59/.59 .43/.44 .46/.46 .49/.49
ParagraphVec DBOW .31/.34 .32/.32 .53/.50 .43/.46 .46/.44 .39/.41 .42/.46 .41/.42
ParagraphVec DM .42/.46 .33/.34 .51/.48 .54/.57 .32/.30 .46/.47 .44/.40 .43/.43
Skipgram .56/.59 .42/.42 .73/.70 .71/.74 .65/.67 .55/.58 .60/.69 .60/.63
C-BOW .57/.61 .43/.44 .72/.69 .71/.75 .71/.73 .55/.59 .60/.69 .60/.65
Unigram TF-IDF .48/.48 .40/.38 .60/.59 .63/.65 .72/.74 .49/.49 .52/.58 .55/.56
Sent2Vec uni. .62/.67 .49/.49 .75/.72 .70/.75 .78/.82 .61/.63 .61/.70 .65/.68
Sent2Vec uni. + bi. .62/.67 .51/.51 .71/.68 .70/.75 .75/.79 .59/.62 .62/.70 .65/.67
SkipThought .44/.45 .14/.15 .39/.34 .42/.43 .55/.60 .43/.44 .57/.60 .42/.43
FastSent .58/.59 .41/.36 .74/.70 .63/.66 .74/.78 .57/.59 .61/.72 .61/.63
FastSent+AE .56/.59 .41/.40 .69/.64 .70/.74 .63/.65 .58/.60 .60/.65 .60/.61
Siamese C-BOW4 .58/.59 .42/.41 .66/.61 .71/.73 .65/.65 .63/.64 − −
C-PHRASE .69/.71 .43/.41 .76/.73 .60/.65 .75/.79 .60/.65 .60/.72 .63/.67

Table 2: Unsupervised Evaluation Tasks: Comparison of the performance of different models on Spearman/Pearson
correlation measures. An underline indicates the best performance for the dataset. Top 3 performances in each data
category are shown in bold. The average is calculated as the average of entries for each correlation measure.

of both supervised and unsupervised tasks along with the
training times of the models5. For unsupervised tasks, av-
erages are taken over both Spearman and Pearson scores.
The comparison includes the best performing unsupervised
and semi-supervised methods described in Section 3. For
models trained on the Toronto books dataset, we report a
3.8 % points improvement over the state of the art. Con-
sidering all supervised, semi-supervised methods and all
datasets compared in (Hill et al., 2016a), we report a 2.2 %
points improvement.

We also see a noticeable improvement in accuracy as we
use larger datasets like twitter and Wikipedia dump. We
can also see that the Sent2Vec models are also faster to train
when compared to methods like SkipThought and DictRep
owing to the SGD step allowing a high degree of paralleliz-
ability.

We can clearly see Sent2Vec outperforming other unsuper-
vised and even semi-supervised methods. This can be at-

5time taken to train C-PHRASE models is unavailable

tributed to the superior generalizability of our model across
supervised and unsupervised tasks.

Comparison with Arora et al. (2017). In Table 4, we
report an experimental comparison to the model of Arora
et al. (2017), which is particularly tailored to sentence sim-
ilarity tasks. In the table, the suffix W indicates that their
down-weighting scheme has been used, while the suffix
R indicates the removal of the first principal component.
They report values of a ∈ [10−4, 10−3] as giving the best
results and used a = 10−3 for all their experiments. Their
down-weighting scheme hints us to reduce the importance
of syntactical features. To do so, we use a simple black-
list containing the 25 most frequent tokens in the Twitter
corpus and discard them before averaging. Results are also
reported in Table 4.

We observe that our results are competitive with the embed-
dings of Arora et al. (2017) for purely unsupervised meth-
ods. We confirm their empirical finding that reducing the
influence of the syntax helps performance on semantic sim-
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Type Training corpus Method Supervised
average

Unsupervised
average

Macro
average

Training time
(in hours)

unsupervised twitter (19.7B words) Sent2Vec uni. + bi. 83.5 68.3 75.9 6.5*
unsupervised twitter (19.7B words) Sent2Vec uni. 82.2 69.0 75.6 3*
unsupervised Wikipedia (1.7B words) Sent2Vec uni. + bi. 83.3 66.2 74.8 2*
unsupervised Wikipedia (1.7B words) Sent2Vec uni. 82.4 66.3 74.3 3.5*
unsupervised Toronto books (0.9B words) Sent2Vec books uni. 81.4 66.7 74.0 1*
unsupervised Toronto books (0.9B words) Sent2Vec books uni. + bi. 82.0 65.9 74.0 1.2*

semi-supervised structured dictionary dataset DictRep BOW + emb 80.5 66.9 73.7 24**
unsupervised 2.8B words + parse info. C-PHRASE 80.5 64.9 72.7 −
unsupervised Toronto books (0.9B words) C-BOW 79.1 62.8 70.2 2
unsupervised Toronto books (0.9B words) FastSent 77.9 62.0 70.0 2
unsupervised Toronto books (0.9B words) SkipThought 83.8 42.5 63.1 336**

Table 3: Best unsupervised and semi-supervised methods ranked by macro average along with their training times. ** in-
dicates trained on GPU. * indicates trained on a single node using 30 cores. Training times for non-Sent2Vec models are
due to (Hill et al., 2016a)

Dataset Unsupervised
GloVe + W

Unsupervised
GloVe + WR

Semi-supervised
PSL + WR

Sent2Vec Unigrams
Tweets Model

Sent2Vec Unigrams
Tweets Model With Blacklist

STS 2014 0.594 0.685 0.735 0.710 0.718
SICK 2014 0.705 0.722 0.729 0.710 0.719

Table 4: Comparison of the performance of the unsupervised and semi-supervised sentence embeddings by (Arora et al.,
2017) with our models, in terms of Pearson’s correlation.

Figure 1: Left figure: the profile of the word vector L2-
norms as a function of log(fw) for each vocabulary word
w, as learnt by our unigram model trained on Toronto
books. Right figure: down-weighting scheme proposed by
Arora et al. (2017): weight(w) = a

a+fw
.

ilarity tasks, and we show that applying a simple blacklist
already yields a noticeable amelioration. It is important to
note that the scores obtained from supervised task-specific
PSL embeddings trained for the purpose of semantic sim-
ilarity outperform our method on both SICK and average
STS 2014, which is expected as our model is trained purely
unsupervised.

The effect of datasets and n-grams. Despite being trained
on three very different datasets, all of our models gener-
alize well to sometimes very specific domains. Models
trained on Toronto Corpus are the state-of-the art on the
STS 2014 images dataset even beating the supervised Cap-
tionRep model trained on images. We also see that addition
of bigrams to our models doesn’t help much when it comes

to unsupervised evaluations but gives a significant boost-up
in accuracy on supervised tasks.

On learning the importance and the direction of the
word vectors. Our model – by learning how to generate
and compose word vectors – has to learn both the direction
of the word embeddings as well as their norm. Consid-
ering the norms of the used word vectors as by our aver-
aging over the sentence, we observe an interesting distri-
bution of the “importance” of each word. In Figure 1 we
show the profile of theL2-norm as a function of log(fw) for
each w ∈ V , and compare it to the static down-weighting
mechanism of Arora et al. (2017). We can observe that our
model is learning to down-weight frequent tokens by itself.
It is also down-weighting rare tokens and the norm profile
seems to roughly follow Luhn’s hypothesis (Luhn, 1958),
a well known information retrieval paradigm, stating that
mid-rank terms are the most significant to discriminate con-
tent. Modifying the objective function would change the
weighting scheme learnt. From a more semantic oriented
objective, it should be possible to learn to attribute lower
norms for very frequent terms, to more specifically fit sen-
tence similarity tasks.

6. Conclusion
In this paper, we introduced a novel unsupervised and com-
putationally efficient method to train and infer sentence
embeddings. On supervised evaluations, our method, on
an average, achieves better performance than all other un-
supervised competitors except the SkipThought vectors.
However, SkipThought vectors show an extremely poor
performance on sentence similarity tasks while our model
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is state-of-the-art for these evaluations on average. Future
work could focus on augmenting the model to exploit data
with ordered sentences. Furthermore, we would like to fur-
ther investigate the models ability as giving pre-trained em-
beddings to enable downstream transfer learning tasks.

Acknowledgments. We are indebted to Piotr Bojanowski
and Armand Joulin for helpful discussions.
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Supplementary Material

A. Parameters for training models

Model Embedding
Dimensions

Minimum
word count

Minimum
Target word

Count

Initial
Lear ning

Rate
Epochs Subsampling

hyper-parameter

Bigrams
Dropped

per sentence

Number of
negatives
sampled

Book corpus
Sent2Vec
unigrams

700 5 8 0.2 13 1× 10−5 - 10

Book corpus
Sent2Vec

unigrams + bigrams
700 5 5 0.2 12 5× 10−6 7 10

Wiki Sent2Vec
unigrams 600 8 20 0.2 9 1× 10−5 - 10

Wiki Sent2Vec
unigrams + bigrams 700 8 20 0.2 9 5× 10−6 4 10

Twitter Sent2Vec
unigrams 700 20 20 0.2 3 1× 10−6 - 10

Twitter Sent2Vec
unigrams + bigrams 700 20 20 0.2 3 1× 10−6 3 10

Table 5: Training parameters for the Sent2Vec models

B. L1 regularization of models
Optionally, our model can be additionally improved by adding an L1 regularizer term in the objective function, leading to
slightly better generalization performance. Additionally, encouraging sparsity in the embedding vectors is beneficial for
memory reasons, allowing higher embedding dimensions h.

We propose to apply L1 regularization individually to each word (and n-gram) vector (both source and target vectors).
Formally, the training objective function (3) then becomes

min
U ,V

∑
S∈C

∑
wt∈S

qp(wt)

((
`
(
u>wt

vS\{wt}
)
+ τ(‖uwt

‖1 + ‖vS\{wt}‖1)
)
+ (4)

|Nwt
|
∑
w′∈V

qn(w
′)
(
`
(
− u>w′vS\{wt}

)
+ τ(‖uw′‖1)

))
where τ is the regularization parameter.

Now, in order to minimize a function of the form f(z) + g(z) where g(z) is not differentiable over the domain, we can use
the basic proximal-gradient scheme. In this iterative method, after doing a gradient descent step on f(z) with learning rate
α, we update z as

zn+1 = proxα,g(zn+ 1
2
) (5)

where proxα,g(x) = argminy{g(y) + 1
2α‖y− x‖22} is called the proximal function(Rockafellar, 1976) of g with α being

the proximal parameter and zn+ 1
2

is the value of z after a gradient (or SGD) step on zn.

In our case, g(z) = ‖z‖1 and the corresponding proximal operator is given by

proxα,g(x) = sign(x)�max(|xn| − α, 0) (6)

where � corresponds to element-wise product.

Similar to the proximal-gradient scheme, in our case we can optionally use the thresholding operator on the updated word
and n-gram vectors after an SGD step. The soft thresholding parameter used for this update is τ ·lr′

|R(S\{wt})| and τ · lr′ for
the source and target vectors respectively where lr′ is the current learning rate, τ is the L1 regularization parameter and S
is the sentence on which SGD is being run.
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We observe that L1 regularization using the proximal step gives our models a small boost in performance. Also, applying
the thresholding operator takes only |R(S\{wt})|·h floating point operations for the updating the word vectors correspond-
ing to the sentence and (|N |+1) ·h for updating the target as well as the negative word vectors, where |N | is the number of
negatives sampled and h is the embedding dimension. Thus, performing L1 regularization using soft-thresholding operator
comes with a small computational overhead.

We set τ to be 0.0005 for both the Wikipedia and the Toronto Book Corpus unigrams + bigrams models.

C. Performance comparison with Sent2Vec models trained on different corpora

Data Model MSRP (Acc / F1) MR CR SUBJ MPQA TREC Average

Unordered Sentences:
(Toronto Books)

Sent2Vec uni. 72.2 / 80.3 75.1 80.2 90.6 86.3 83.8 81.4
Sent2Vec uni. + bi. 72.5 / 80.8 75.8 80.3 91.2 85.9 86.4 82.0
Sent2Vec uni. + bi.L1reg 71.6 / 80.1 76.1 80.9 91.1 86.1 86.8 82.1

Unordered sentences: Wikipedia
(69 million sentences; 1.7 B words)

Sent2Vec uni. 71.8 / 80.2 77.3 80.3 92.0 87.4 85.4 82.4
Sent2Vec uni. + bi. 72.4 / 80.8 77.9 80.9 92.6 86.9 89.2 83.3
Sent2Vec uni. + bi.L1reg 73.6 / 81.5 78.1 81.5 92.8 87.2 87.4 83.4

Unordered sentences: Twitter
(1.2 billion sentences; 19.7 B words)

Sent2Vec uni. 71.5 / 80.0 77.1 81.3 90.8 87.3 85.4 82.2
Sent2Vec uni. + bi. 72.4 / 80.6 78.0 82.1 91.8 86.7 89.8 83.5

Other structured
Data Sources

CaptionRep BOW 73.6 / 81.9 61.9 69.3 77.4 70.8 72.2 70.9
CaptionRep RNN 72.6 / 81.1 55.0 64.9 64.9 71.0 62.4 65.1
DictRep BOW 73.7 / 81.6 71.3 75.6 86.6 82.5 73.8 77.3
DictRep BOW+embs 68.4 / 76.8 76.7 78.7 90.7 87.2 81.0 80.5
DictRep RNN 73.2 / 81.6 67.8 72.7 81.4 82.5 75.8 75.6
DictRep RNN+embs. 66.8 / 76.0 72.5 73.5 85.6 85.7 72.0 76.0

Table 6: Comparison of the performance of different Sent2Vec models with different semi-supervised/supervised models
on different downstream supervised evaluation tasks. An underline indicates the best performance for the dataset and
Sent2Vec model performances are bold if they perform as well or better than all other non-Sent2Vec models, including
those presented in Table 1.

STS 2014 SICK 2014 Average
Model News Forum WordNet Twitter Images Headlines Test + Train
Sent2Vec book corpus uni. .62/.67 .49/.49 .75/.72. .70/.75 .78/.82 .61/.63 .61/.70 .65/.68
Sent2Vec book corpus uni. + bi. .62/.67 .51/.51 .71/.68 .70/.75 .75/.79 .59/.62 .62/.70 .65/.67
Sent2Vec book corpus uni. + bi. L1 reg .62/.68 .51/.52 .72/.70 .69/.75 .76/.81 .60/.63 .62/.71 .66/.68
Sent2Vec wiki uni. .66/.71 .47/.47 .70/.68 .68/.72 .76/.79 .63/.67 .64/.71 .65/.68
Sent2Vec wiki uni. + bi. .68/.74 .50/.50 .66/.64 .67/.72 .75/.79 .62/.67 .63/.71 .65/.68
Sent2Vec wiki uni. + bi. L1 reg .69/.75 .52/.52 .72/.69 .67/.72 .76/.80 .61/.66 .63/.72 .66/.69
Sent2Vec twitter uni. .67/.74 .52/.53 .75/.72 .72/.78 .77/.81 .64/.68 .62/.71 .67/.71
Sent2Vec twitter uni. + bi. .68/.74 .54/.54 .72/.69 .70/.77 .76/.79 .62/.67 .63/.72 .66/.70
CaptionRep BOW .26/.26 .29/.22 .50/.35 .37/.31 .78/.81 .39/.36 .45/.44 .54/.62
CaptionRep RNN .05/.05 .13/.09 .40/.33 .36/.30 .76/.82 .30/.28 .36/.35 .51/.59
DictRep BOW .62/.67 .42/.40 .81/.81 .62/.66 .66/.68 .53/.58 .61/.63 .58/.66
DictRep BOW + embs. .65/.72 .49/.47 .85/.86 .67/.72 .71/.74 .57/.61 .61/.70 .62/.70
DictRep RNN .40/.46 .26/.23 .78/.78 .42/.42 .56/.56 .38/.40 .47/.49 .49/.55
DictRep RNN + embs. .51/.60 .29/.27 .80/.81 .44/.47 .65/.70 .42/.46 .52/.56 .49/.59

Table 7: Unsupervised Evaluation: Comparison of the performance of different Sent2Vec models with semi-
supervised/supervised models on Spearman/Pearson correlation measures. An underline indicates the best performance
for the dataset and Sent2Vec model performances are bold if they perform as well or better than all other non-Sent2Vec
models, including those presented in Table 2.

D. Dataset Description

STS 2014 SICK 2014 Wikipedia
Dataset

Twitter
Dataset

Book Corpus
DatasetSentence Length News Forum WordNet Twitter Images Headlines Test + Train

Average 17.23 10.12 8.85 11.64 10.17 7.82 9.67 25.25 16.31 13.32
Standard Deviation 8.66 3.30 3.10 5.28 2.77 2.21 3.75 12.56 7.22 8.94

Table 8: Average sentence lengths for the datasets used in the comparison.


